이번 포스팅에서는 머신러닝 카테고리에서 포스팅한 선형 회귀에 대한 이해를 바탕으로 텐서플로우로 구현을 해볼 것이다. 텐서플로우는 다음과 같은 처리를 반복한다. 1. 텐서노드와 엣지로 이루어진 그래프를 빌드한다.2. 세션을 통해서 그래프를 실행 시킨다. ( Session.run() )3. 실행 결과를 기반으로 텐서 플로우는 다시 그래프를 업데이트 시키기 위해 W(가중치) 값과 b(바이어스) 값을 조절한다. 우리는 선형 회귀 모델에서 H(x) = Wx + b 라는 간단한 식을 알 수 있다.이 간단한 식을 통하여 구현하게 되는데.. 우리는 이와 같은 아주 간단한 데이터 셋이 있다고 하자.X Y 1 1 2 2 3 3 이에 해당하는 코드를 작성하면 아래와 같다. 1234import tensorflow as tf ..
이전 포스팅에서 머신러닝의 개념 중 지도학습(Supervised Learning) 에 대하여 포스팅 하였다. 그 중 머신러닝에서의 선형 회귀(Linear Regression)을 활용한 모델이 있는데 이에 대해 알아보자! 회귀 분석(Regression Analysis) 먼저 회귀 분석에 대해서 간단히 짚고 넘어가자.회귀의 사전적인 의미는 "다시 예전의 상태로 돌아감" 을 의미한다. 이 용어는 영국의 유전학자 Francis Galton 이라는 분이 유전의 법칙을 연구하다 나온 것에 기인하게 되는데 대략적인 연구내용을 살펴보자면 부모와 자녀의 키 사이의 관계를 연구하면서 나오게 된 연구의 결과로 자녀의 키가 아버지 그리고 어머니 키의 평균을 조사하여 표로 나타낸 결과 결국 자녀의 키는 엄청 크거나 작은 것이 ..
- Total
- Today
- Yesterday
- 선형회귀
- 머신러닝 개념
- 텐서플로우 아키텍쳐
- linear regression
- dynamodb #dynamodb stream #stream
- 선형회귀 구현
- Machine Learning
- 머신러닝
- Machine Learning Concept
- 텐서플로우
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |